Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; : e0448622, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20241142

ABSTRACT

The increasing prevalence of antibiotic-resistant bacteria is an emerging threat to global health. The analysis of antibiotic-resistant enterobacteria in wastewater can indicate the prevalence and spread of certain clonal groups of multiresistant bacteria. In a previous study of Escherichia coli that were isolated from a pump station in Norway over 15 months, we found a recurring E. coli clone that was resistant to trimethoprim, ampicillin, and tetracycline in 201 of 3,123 analyzed isolates (6.1%). 11 representative isolates were subjected to whole-genome sequencing and were found to belong to the MLST ST2797 E. coli clone with plasmids carrying resistance genes, including blaTEM-1B, sul2, dfrA7, and tetB. A phenotypic comparison of the ST2797 isolates with the uropathogenic ST131 and ST648 that were repeatedly identified in the same wastewater samples revealed that the ST2797 isolates exhibited a comparable capacity for temporal survival in wastewater, greater biofilm formation, and similar potential for the colonization of mammalian epithelial cells. ST2797 has been isolated from humans and has been found to carry extended spectrum ß-lactamase (ESBL) genes in other studies, suggesting that this clonal type is an emerging ESBL E. coli. Collectively, these findings show that ST2797 was more ubiquitous in the studied wastewater than were the infamous ST131 and ST648 and that ST2797 may have similar abilities to survive in the environment and cause infections in humans. IMPORTANCE The incidence of drug-resistant bacteria found in the environment is increasing together with the levels of antibiotic-resistant bacteria that cause infections. The COVID-19 pandemic has shed new light on the importance of monitoring emerging threats and finding early warning systems. Therefore, to mitigate the antimicrobial resistance burden, the monitoring and early identification of antibiotic-resistant bacteria in hot spots, such as wastewater treatment plants, are required to combat the occurrence and spread of antibiotic-resistant bacteria. Here, we applied a PhenePlate system as a phenotypic screening method for genomic surveillance and discovered a dominant and persistent E. coli clone ST2797 with a multidrug resistance pattern and equivalent phenotypic characteristics to those of the major pandemic lineages, namely, ST131 and ST648, which frequently carry ESBL genes. This study highlights the continuous surveillance and report of multidrug resistant bacteria with the potential to spread in One Health settings.

2.
Int J Environ Res Public Health ; 20(3)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216014

ABSTRACT

The consumption of alcohol in a population is usually monitored through individual questionnaires, forensics, and toxicological data. However, consumption estimates have some biases, mainly due to the accumulation of alcohol stocks. This study's objective was to assess alcohol consumption in Slovakia during the COVID-19 pandemic-related lockdown using wastewater-based epidemiology (WBE). Samples of municipal wastewater were collected from three Slovak cities during the lockdown and during a successive period with lifted restrictions in 2020. The study included about 14% of the Slovak population. The urinary alcohol biomarker, ethyl sulfate (EtS), was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EtS concentrations were used to estimate the per capita alcohol consumption in each city. The average alcohol consumption in the selected cities in 2020 ranged between 2.1 and 327 L/day/1000 inhabitants and increased during days with weaker restrictions. WBE can provide timely information on alcohol consumption at the community level, complementing epidemiology-based monitoring techniques (e.g., population surveys and sales statistics).


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Cities , Slovakia/epidemiology , Chromatography, Liquid/methods , Pandemics , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Communicable Disease Control , Alcohol Drinking/epidemiology , Ethanol/analysis
3.
2022 IEEE International Conference on Digital Health, ICDH 2022 ; : 117-122, 2022.
Article in English | Scopus | ID: covidwho-2051994

ABSTRACT

The presence of SARS-CoV-2 RNA in wastewaters was demonstrated early into the COVID-19 pandemic. Data on the presence of SARS-CoV-2 in urban wastewater can be exploited for different aims, including: i) description of outbreaks trends, ii) early warning system for new COVID-19 outbreaks or for the spread of the virus in new territories, iii) study of SARS-Co V-2 genetic diversity and detection of its variants, and iv) estimating the prevalence of COVID-19 infections. Therefore, wastewater surveillance (known as Wastewater Based Epidemiology, WBE) can be a powerful tool to support the decision-making process on public health measures. Italy was among the first EU countries investigating the occurrence and concentration of SARS-Co V-2 RNA in urban wastewaters, virus detection being accomplished at an early phase of the epidemic, between February and May 2020 in north and central Italy. The present study reports on the methodological issues, related to sample data collection and management, encountered in establishing the systematic, wastewater-based SARS-CoV-2 surveillance, and describes the results of the first six months of surveillance. © 2022 IEEE.

4.
Sci Total Environ ; 806(Pt 4): 150816, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1458560

ABSTRACT

Wastewater-based viral surveillance was proposed as a promising approach to monitor the circulation of SARS-CoV-2 in the general population. The aim of this study was to develop an analytical method to detect SARS-CoV-2 RNA in urban wastewater, and apply it to follow the trends of epidemic in the framework of a surveillance network in the Lombardy region (Northern Italy). This area was the first hotspot of COVID-19 in Europe and was severely affected. Composite 24 h samples were collected weekly in eight cities from end-March to mid-June 2020 (first peak of the pandemic). The method developed and optimized, involved virus concentration using PEG centrifugation, and one-step real-time RT-PCR for analysis. SARS-CoV-2 RNA was identified in 65 (61%) out of 107 samples, and the viral concentrations (up to 2.1 E + 05 copies/L) were highest in March-April. By mid-June, wastewater samples tested negative in all the cities corresponding to the very low number of cases recorded in the same period. Viral loads were calculated considering the wastewater daily flow rate and the population served by each wastewater treatment plant, and were used for inter- city comparison. The highest viral loads were found in Brembate, Ranica and Lodi corresponding to the hotspots of the first peak of pandemic. The pattern of decrease of SARS-CoV-2 in wastewater was closely comparable to the decline of active COVID-19 cases in the population, reflecting the effect of lock-down. This study tested wastewater surveillance of SARS-CoV-2 to follow the pandemic trends in one of most affected areas worldwide, demonstrating that it can integrate ongoing virological surveillance of COVID-19, providing information from both symptomatic and asymptomatic individuals, and monitoring the effect of health interventions.


Subject(s)
COVID-19 , Wastewater , Communicable Disease Control , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL